Text segmentation with character-level text embeddings
نویسنده
چکیده
Learning word representations has recently seen much success in computational linguistics. However, assuming sequences of word tokens as input to linguistic analysis is often unjustified. For many languages word segmentation is a non-trivial task and naturally occurring text is sometimes a mixture of natural language strings and other character data. We propose to learn text representations directly from raw character sequences by training a Simple Recurrent Network to predict the next character in text. The network uses its hidden layer to evolve abstract representations of the character sequences it sees. To demonstrate the usefulness of the learned text embeddings, we use them as features in a supervised character level text segmentation and labeling task: recognizing spans of text containing programming language code. By using the embeddings as features we are able to substantially improve over a baseline which uses only surface character n-grams.
منابع مشابه
A Modified Character Segmentation Algorithm for Farsi Printed Text Using Upper Contour Labelling
In this paper, a modified segmentation algorithm for printed Farsi words is presented. This algorithm is based on a previous work by Azmi that uses the conditional labeling of the upper contour to find the segmentation points. The main objective is to improve the segmentation results for low quality prints. To achieve this, various modifications on local baseline detection, contour labeling an...
متن کاملA Modified Character Segmentation Algorithm for Farsi Printed Text Using Upper Contour Labelling
In this paper, a modified segmentation algorithm for printed Farsi words is presented. This algorithm is based on a previous work by Azmi that uses the conditional labeling of the upper contour to find the segmentation points. The main objective is to improve the segmentation results for low quality prints. To achieve this, various modifications on local baseline detection, contour labeling an...
متن کاملContext-Specific and Multi-Prototype Character Representations
Unsupervised word representations have demonstrated improvements in predictive generalization on various NLP tasks. Much effort has been devoted to effectively learning word embeddings, but little attention has been given to distributed character representations, although such character-level representations could be very useful for a variety of NLP applications in intrinsically “character-base...
متن کاملWord-Context Character Embeddings for Chinese Word Segmentation
Neural parsers have benefited from automatically labeled data via dependencycontext word embeddings. We investigate training character embeddings on a word-based context in a similar way, showing that the simple method significantly improves state-of-the-art neural word segmentation models, beating tritraining baselines for leveraging autosegmented data.
متن کاملChinese Medical Question Answer Matching Using End-to-End Character-Level Multi-Scale CNNs
This paper focuses mainly on the problem of Chinese medical question answer matching, which is arguably more challenging than open-domain question answer matching in English due to the combination of its domain-restricted nature and the language-specific features of Chinese. We present an end-to-end character-level multi-scale convolutional neural framework in which character embeddings instead...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.4628 شماره
صفحات -
تاریخ انتشار 2013